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If one wants to control the noise from a duct, then one must have a sufficient
number of sensors and actuators so that the control system is observable and
controllable. The number of sensors and actuators for controlling radiating noise
from a duct has to be incorporated with the number of modes that one wants to
control. These considerations motivated the present study which considers a
control system that has fewer sensors and actuators than the number of
propagating modes in a duct. The control performance and robust reliability of
such a kind of control system are investigated, theoretically and numerically. The
likelihood of success in reducing the radiation power of a duct is verified by
theoretical analysis and numerical simulations. In addition, the control
performance of the control system is verified by experiments.
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1. INTRODUCTION

When the lateral dimension of a duct is larger than or comparable to the
wavelengths of interest, the higher order modes propagate in the duct. These
modes will be radiated, depending on their radiation efficiencies, and produce
noise in the exterior region.

If one wants to apply an active noise control method for this case, one has to
have the necessary number of sensors and actuators. The sensors must be located
where the observability of the control system is guaranteed. The actuators have
to be located where its controllability will be satisfied. Typical examples of this
kind can be found in references [1, 2]. In these studies, the first four propagating
modes in a square duct have been controlled using four sensors and actuators
corresponding to the number of propagating modes.

Figure 1 is a schematic diagram that illustrates the relations between sound field
variables, control system variables, and residual radiation power at duct
termination.

If one has fewer sensors and actuators than required for its controllability and
observability, then one may not achieve the desired noise reduction. This can be

0022–460X/99/130351+19 $30.00/0 7 1999 Academic Press



Control system

Control system variables

Number and location of sensors
Number and location of actuators
Cost function

Wt

Residual radiation power
at duct termination

(after control)

Sound field variables

The set of sound fields
that can be produced
at duct termination

(before control)

.-.   .-. 352

interpreted in a different manner where one could have ‘‘some’’ noise reduction
even if one does not have a sufficient number of sensors and actuators. Our first
objective is to examine the possibility of obtaining noise reduction when we have
fewer sensors and actuators than the number of propagating modes in a duct.

This situation could happen in many practical cases. For example, for fairly
large ducts, it is easy to have more than three modes involved in radiating noise.
What if one uses only one sensor and one actuator in this case? Is there any chance
of achieving noise reduction?

The problem is to find a control strategy for the duct, whose number of
propagating modes is known, but whose modal participation is unknown, by using
a smaller number of sensors and actuators than the number of propagating modes
in a duct. The locations of sensors and actuators are the variables one can use.

The first thing to do will be a mathematical formulation associated with the
problem. In section 2, the equations of residual radiation power, which is a global
measure of the resulting noise, will be derived as a function of sound field variables
and control system variables. In sections 3 and 4, the control performance and
robust reliability [3] of the control system will be investigated in terms of sound
field variables and control system variables. In addition, the possibility of
implementing the robust radiation power control system will be investigated. In
section 5, numerical simulation and experiments will be performed to confirm the
theoretical results obtained in sections 3 and 4.

2. RESIDUAL RADIATION POWER

As the first step, the equations of residual radiation power, after control, will
be derived as a function of sound field variables and control system variables. The
unknown pressure field at duct termination due to arbitrary primary sources will
be considered as sound field variables. The number and location of control sources
and sensors will be considered as control system variables.

2.1.        

Let pp(r, u, 0) represent acoustic pressure at the open end of a hard-walled
circular duct due to arbitrary primary sources (Figure 2). Then, pp(r, u, 0) can be

Figure 1. The relations between sound field variables, control system variables, and residual
radiation power at duct termination.
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Figure 2. The noise emitted from a duct and its acoustic radiation power (Wp).

expressed in terms of the eigenfunctions of the duct’s cross-section (cn (r, u)), and
its modal pressure amplitudes (bn ) as

pp(r, u, 0)= s
N

n=1

bncn (r, u), (1)

where N is the number of the propagating modes in the duct, which can be
determined if the radius of the duct (ro ) and the frequency range of the primary
sources are known [4] (Table 1).

In a matrix form, pp(r, u, 0) can be rewritten as an inner product of c� and b�.

pp(r, u, 0)=c�b�, (2)

where c� = {c1(r, u), c2(r, u), . . . , cN (r, u)} is the (1×N) matrix of the
eigenfunctions of a duct cross-section, and b�= {b1, b2, . . . , bN}T is the (N×1)
matrix whose amplitudes are variables.

Let pc(r, u, 0) denote the pressure at duct termination due to K control sources
located at xc

k =(rc
k , uc

k , zc) (Figure 3). Then, pc(r, u, 0) can be expressed as [5–7]

pc(r, u, 0)= s
N

n=1 0cn (r, u) s
K

k=1 0 rv

2Akzn
(1+Rn ) ejkznzc

cn (rc
k , uc

k )*qk11, (3)

T 1

Eigenfunctions of duct’s cross-section (cn (r, u)) and wave number in r
direction (krn )

n 1 2 3
krn 0 1·84/r0 1·84/r0

cn (r, u) w w= 6
1 N2J1(kr2r) cos u N3J1(kr3r) sin u

fcut-off 0 Hz 419 Hz 419 Hz

r0: radius of duct (0·24 m).
N2, N3: normalization factor of eigenfunction (N2 =N3 =2·8954).
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Figure 3. Schematic diagram of the active control system with K control sources and L error
microphones.

where r is the density of air, v is the frequency, A is the duct cross-sectional area,
kzn is the wave number in z direction, and Rn is the pressure reflection coefficient
at duct termination [7]. The superscript ‘‘*’’ denotes complex conjugate, and qk is
the volume velocity of the kth control source. In a matrix form, pc(r, u, 0) can be
expressed as equation (4a) in terms of q̄, Cc, and Tc.

pc(r, u, 0)=c�TcCcq̄, (4a)

q̄= {q1, q2, . . . , qK}T, (4b)

c1(rc
1, uc

1)* · · · c1(rc
K , uc

K )*

Cc = ···
· · ·

··· , (4c)G
G

G

K

k
G
G

G

L

lcN (rc
1, uc

1)* · · · cN (rc
K , uc

K )*

Tc
11 · · · 0

Tc = ···
· · ·

···
, Tc

nn =
rv

2Akzn
(1+Rn ) ejkznzc. (4d, e)

G
G

G

K

k

G
G

G

L

l0 · · · Tc
NN

Let pt(r, u, 0) represent the pressure at duct termination due to primary and
control sources. Then, from equations (2) and (4a), pt(r, u, 0) can be expressed as

pt(r, u, 0)=c�(b�+TcCcq̄), (5)

where b� and TcCcq̄ represent the modal pressure amplitudes due to primary and
control sources, respectively.
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2.2.      

Various cost functions, for example, acoustic potential energy, acoustic energy
density, sound intensity, etc., can be used for the reduction of duct noise. Among
these cost functions, the acoustic potential energy is the simplest one to measure.
The cost function employed in this study is the acoustic potential energy at the
error microphone locations.

Let p̄m be the measured pressure vector of (L×1) at the error microphones
which are located at xm

l =(rm
l , um

l , zm) (Figure 3). Then, p̄m can be expressed as
equation (6a) in terms of Cm and Tm.

p̄m =CmTm(b�+TcCcq̄), (6a)

c1(rm
1 , um

1 ) · · · cN (rm
1 , um

1 )

Cm = ···
· · ·

··· , (6b)G
G

G

K

k
G
G

G

L

lc1(rm
L , um

L ) · · · cN (rm
L , um

L )

Tm
11 · · · 0

G
G

G

K

k

G
G

G

L

l

Tm = ···
· · ·

··· , Tm
nn =

1
1+Rn

e−jkznzm +
Rn

1+Rn
ejkznzm. (6c, d)

0 · · · Tm
NN

Then, the cost function (J), which represents the acoustic potential energy at
the error microphone locations, can be expressed as

J= p̄mHp̄m. (7)

where the superscript ‘‘H’’ denotes Hermitian transpose.
Some manipulations lead to the following expression for q̄ which minimize J.

q̄=−(CmTmTcCc)+CmTmb�, (8)

where superscript ‘‘+’’ implies the Moore–Penrose generalized matrix inverse [8].
Substitution of equation (8) into equation (5) yields

pt(r, u, 0)=c�(I−TcCc(CmTmTcCc)+CmTm)b�, (9)

where I is the (N×N) identity matrix.
For convenience, let the second term in the parenthesis of equation (9) be C,

that is

C=TcCc(CmTmTcCc)+CmTm. (10)
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Then, the residual pressure field, when J is minimized, can be expressed as a
function of the sound field variables and control system variables as

pt(r, u, 0)=c�(I−C)b�. (11)

2.3.      

The residual radiation power, which is a global measure of the resulting noise,
can be defined as

Wt =gA

1
2

Re {pt(r, u, 0)*ut(r, u, 0)} · nA dA, (12)

where ut(r, u, 0) is the particle velocity at z=0, and A and nA represent the duct
cross-sectional area and its unit normal vector respectively.

Substitution of equation (11) into equation (12), and some mathematical
rearrangements yield

Wt =gA

[c�(I−C)b�]H[c�A(I−C)b�] dA, (13)

where A is the (N×N) diagonal matrix, which consists of the radiation impedance
Zn [7] at duct termination.

A11 · · · 0

A= ···
· · ·

··· , Ann =Re 6 1
2Zn7. (14)G

G

G

G

G

K

k

G
G

G

G

G

L

l0 · · · ANN

Since the eigenfunctions (Table 1) satisfy the orthonormal condition
(fA C� Hc� dA= I), equation (13) can be written in a more compact form, that is

Wt = b�H(I−C)HA(I−C)b�. (15)

In equation (15), one can see that Wt can be expressed as a function of the sound
field variable (b�) and matrix C which consists of the control system variables. It
is noteworthy that if C is the (N×N) identity matrix [1, 2], then Wt vanishes for
any value of b�.

The aim of this study is to investigate the control performance and robust
reliability [3] of a control system which consists of fewer sensors and control
sources than the number of propagating modes in a duct. Thus, the control
performance and robust reliability of such a control system will be investigated
in the following sections.
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3. CONTROL PERFORMANCE OF THE CONTROL SYSTEM

In this section, the characteristics of matrix C, which is a function of the control
system variables, will be investigated. Then, the control performance of the control
system will be discussed.

3.1.    C
Since C is the (N×N) matrix, it has N eigenvalues (mn ) and corresponding

eigenvectors (ūn ) satisfying the relation.

Cūn = mnūn , (n=10N). (16)

Let the rank of C be R, then C has R non-zero eigenvalues and N−R zero
eigenvalues. If one has one control source (K=1) and one error microphone
(L=1), then the rank of C is 1, and C has one non-zero eigenvalue (m1) and N−1
zero eigenvalues (m2 0 mN ). This case will be kept in the later part of this section
because of its simplicity.

The non-zero eigenvalue and corresponding eigenvector can be found by
multiplying equation (10) by TcCc as

CTcCc =TcCc. (17)

By comparing equation (17) with equation (16), one can see that the non-zero
eigenvalue of C, m1, is 1 and the corresponding eigenvector, ū1, is TcCc. It is
noteworthy that the location of the control source determines the ū1.

Since mn (n=20N) of matrix C is zero, the following relation can be easily
derived from equation (16).

Cūn = 0�, (n=20N). (18)

From equations (10) and (18), one can see that ū2 0 ūN satisfies the following
orthogonal condition. That is, (CmTm)ūn =0 (n=20N). It is noteworthy that
(CmTm)H represents the vector that is orthogonal to ū2 0 ūN . Table 2 summarizes
the eigenvalues (mn ) and eigenvectors (ūn ) of matrix C.

3.2.      

The sound field variable (b�) can be expressed as a function of ūn (n=10N),
such as

b�= s
N

n=1

cnūn . (19)

T 2

Eigenvalues (mn ) and eigenvectors (ūn ) of matrix C (K=L=1)

n 1 20N
mn 1 0
ūn TcCc (CmTm)ūn =0

TcCc is determined by the (CmTm)H is determined by the
location of control source location of error microphone
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Substitution of equation (19) into equation (15) gives

Wt =0 s
N

n=1

cnūn1
H

(I−C)HA(I−C)0 s
N

n=1

cnūn1. (20)

From equations (17), (18), and (19), one can see that

(I−C) sN
n=1

cnūn = sN
n=2

cnūn .

Thus, equation (20) can be written in a simplified form as

Wt =0 s
N

n=2

cnūn1
H

A0 s
N

n=2

cnūn1. (21)

In equation (21), one can observe that the ū1 component of b� is controlled by
the control system, but the ū2 0 ūN components of b� are uncontrolled. This is
because the error microphone cannot measure the ū2 0 ūN component of b�
(CmTmūn =0, (n=20N)). It is noteworthy that the control performance of the
control system, which consists of fewer sensors and actuators than N, depends on
the primary sound field. One can deduce that for b�, whose direction coincides with
that of ū1, the control system can completely reduce the radiation power. In
addition, the smaller the difference between the direction of b� and ū1, the smaller
the residual radiation power will be. It is noteworthy that b� has uncertainty since
only parts of ūn ’s are assumed to be measured. Then, the next question is what
is the degree of success in reducing the radiation power under this uncertain
circumstance. The issues associated with this question are dealt with next.

4. ROBUST RELIABILITY OF THE CONTROL SYSTEM

This section addresses the robust reliability [3] of the control system. For this
purpose, a set of primary sound fields, which can be produced at duct termination,
will be defined. The robust reliability of the control system which has fewer sensors
and actuators than N, and the condition for implementing the robust radiation
power control system will be discussed.

4.1.      

As discussed in section 3.2, the performance of the control system, which
consists of a smaller number of sensors and actuators than N, depends on the
primary sound field variables (b�). It is desired to have the residual radiation power
after the control to be less than that of the uncontrolled value, regardless of what
primary sound field actually occurs in practice. One may say that such a control
system is robust with respect to the uncertainty in the primary sound field. For
the practical implementation of the control system, it is necessary to study the
robust reliability [3] of such a control system.
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Figure 4. Example of a set of sound field variables S(Wp) (N=3).

The first thing one has to do is to have a model that can appropriately express
the noise source which has uncertainty. From equation (15), the radiation power
due to arbitrary primary sources can be represented as

Wp = b�HAb�. (22)

If one does not have any information about the primary sources, then the
control problem has to deal with the uncertainty associated with primary sources.
Therefore, our main interest is to find a control strategy when we do not know
b�, this results in uncertainty in b�.

This uncertainty can be written by using the uncertainty principle [3]. The set
of functions (pp(r, u, 0)) for which the coefficients (b�) lie on the surface of an
ellipsoid is defined as

S(Wp)= {pp(r, u, 0)=c�b� = b�HAb�=Wp}, (23)

where Wp is the radiation power produced due to the unknown primary sources
(Figure 4). It is noteworthy that unknown variations of the primary sound field
are represented by S(Wp). In other words, S(Wp) represents the set of all primary
sound fields, which can be produced at duct termination, whose radiation powers
are Wp. Each particular realization of the primary sound field, pp(r, u, 0),
corresponds to a particular choice of b� on the surface of the ellipsoid.
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4.2.        

The greatest possible residual radiation power, after applying the control
system, can be expressed as

W
 t = max
b�$S(Wp)

Wt. (24)

If one defines (I−C)HA(I−C) of equation (15) as V, then equation (24) can
be expressed as the following optimization problem.

W
 t =max b�HVb�, constraint b�HAb�=Wp. (25)

The solution of this optimization problem is an eigenvalue problem [3]. One can
find that the greatest possible residual radiation power (W
 t) is proportional to the
greatest eigenvalue of a particular known matrix A−1/2HVA−1/2 and Wp (see
Appendix).

W
 t = lmaxWp. (26)

where lmax is the greatest eigenvalue of the matrix A−1/2HVA−1/2. Let ēmax denote the
normalized eigenvector corresponding to lmax , then the direction of ēmax coincides
with that of A1/2b�, into which maximum radiation power (W
 t) occurs. It is
noteworthy that when lmax E 1, Wt is always less than Wp, regardless of the
primary sound field. On the other hand, when lmax q 1, the residual radiation
power Wt would be larger than Wp for some b� in S(Wp). Equation (26) is the basic
design equation for the robust control system since it shows us that one must
design the control system to minimize lmax . It should also be mentioned that lmax

is a measure of the robust reliability which accounts for the design of the control
system and the uncertainty in the primary sound field.

Table 3 summarizes the eigenvalues ln and normalized eigenvectors (ēn ) of the
matrix A−1/2HVA−1/2 when K=L=1. In Table 3, one can see that lmax can be
expressed as a function of ē1 and ēm,

lmax = b 1
ēH

1 ēmb
2

, (27)

where ē1 =A1/2TcCc/=A1/2TcCc= is a function of the location of the control source,
and ēm =(CmTmA−1/2)/=(CmTmA−1/2)= is a function of the location of the error
microphone. Physically, ē1 represents the direction of A1/2b� for minimum radiation
power occurrence. ēm represents the vector that is orthogonal to the unobservable
plane (Figure 5).

From equation (27), one can observe that as the difference between the direction
of ē1 and ēm increases, lmax increases. It is noteworthy that the minimum value of
lmax is 1, and it occurs when the direction of ē1 coincides with that of ēm. Therefore,
one can see that for the robust control of the radiation power (Wt EWp) for any
b� in S(Wp), one has to design a control system that satisfies the following
condition, such that

ATcCc = a(CmTm)H, (28)
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T 3

Eigenvalues (ln ) and normalized eigenvectors (ēn ) of A−1/2HVA−1/2 (K=L=1)

n 1 20N−1 N

ln 0 1 b 1
ēH

1 ēm b
2

ēn
A1/2TcCc

=A1/2TcCc= ēmHēn =0 ēH
n ēN =0

ēH
1 ēn =0 (N=10N−1)

ēH
N ēn =0

ē1 represents the direction ēn represents the direction of ēN represents the direction of
of A1/2b� which is perfectly A1/2b� which is unobservable A1/2b� which is observable

controllable and uncontrollable but uncontrollable

ēm =(CmTmA−1/2)H/=(CmTmA−1/2)H.
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Figure 5. Example of normalized eigenvectors ēn of matrix A−1/2HVA−1/2, and ēm (K=L=1,
N=3; see Table 3).

where a is a complex constant. Physically, equation (28) means that the error
microphone does not measure the uncontrollable component for the control
source located at xc

1; it only measures the controllable component for the control
source (Figure 5).

5. NUMERICAL SIMULATIONS AND EXPERIMENTS

For the verification of the theoretical analysis results obtained in sections 3 and
4, numerical simulations and experiments are performed.

5.1.        

Based on theoretical analysis, a control system, which satisfies equation (28),
is designed. The control system has one error microphone and one control
source to reduce the radiation power consisting of the three propagating modes
(Table 1).

For the case of N=3, K=L=1, ATcCc and (CmTm)H in equation (28) can be
expressed as

ATcCc =A11Tc
1161,

A22Tc
22

A11Tc
11

N2J1(kr2rc
1) cos uc

1,
A33Tc

33

A11Tc
11

N3J1(kr3rc
1) sin uc

17
T

, (29)

(CmTm)H =Tm*
11 61,

Tm*
22

Tm*
11

N2J1(kr2rm
1 ) cos um

1 ,
Tm*

33

Tm*
11

N3J1(kr3rm
1 ) sin um

1 7
T

, (30)
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where N2 and N3 are the normalization factors of the eigenfunction, krn is the wave
number in r direction, and J1( · ) is the Bessel function of the first kind of order
1. Since R2 =R3 and kr2 = kr3 (Table 1), one can see that

A33Tc
33

A11Tc
11

=
A22Tc

22

A11Tc
11

and
Tm*

33

Tm*
11

=
Tm*

22

Tm*
11

.

From equations (28), (29), and (30), the condition for the robust control system
can be expressed as

A22Tc
22

A11Tc
11

J1(kr2rc
1)=

Tm*
22

Tm*
11

J1(kr2rm
1 ), uc

1 = um
1 . (31a, b)

For example, if the frequency of the primary source is 460 Hz, and if one selects
the position of the control source at xc

1 = (0·5r0, 0 p, −1·3m), then several error
microphone locations, which satisfy equation (31), can be obtained. One of those
possible microphone locations is xm

1 = (0·28r0, 0 p, −0·15m). The schematic
diagram of this control system is shown in Figure 6. The following describes the
control performance and robust reliability of this control system.

5.2.     

The numerical simulation gives that lmax of the control system (Figure 6) is 1.
The eigenvector (ēmax ), which represents the direction of A1/2b� for maximum
residual radiation power (W
 t) occurrence is found to be {0·827, −0·495− j0·269,
0}T. Similarly, the eigenvector (ē1) representing the direction of A1/2b� for minimum
residual radiation power occurrence is found to be {0·495− j0·269, 0·827, 0}T

(Table 3).
Figure 7 represents the control performance of this control system. Figure 7(a)

is a plot of the pressure field at z= zm, when A1/2b� coincides with ē1. In Figure 7(a),

Figure 6. Schematic diagram of the experimental set-up for radiation power control (unit: mm).
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Figure 7. Control performance of the robust radiation power control system (frequency: 460 Hz,
xc

1 = (0·5r0, 0p, −1·3m), xm
1 = (0·28r0, 0p, −0·15m), r0 =0·24 m, ēm = {0·495− j0·269, 0·827, 0}T).

(a) When A1/2b�= ē1 = {0·495− j0·269, 0·827, 0}T; (b) when A1/2b�= ē2 = {0, 0, 1}T; (c) when
A1/2b�= ēmax = {0·827, −0·495− j0·269, 0}T.

one can see that the control system can completely reduce the radiation power.
Therefore, one can deduce that the smaller the difference between the direction of
A1/2b� and ē1, the smaller the residual radiation power will be. Figure 7(b) represents
the pressure field at z= zm, when A1/2b� coincides with ē2. One can observe that
A1/2b�, coinciding with ē2, is unobservable and uncontrollable since ēmHē2 =0 and
ēH

1 ē2 =0 (Table 3, Figure 5). Figure 7(c) represents the pressure field at z= zm,
when A1/2b� coincides with ēmax . In Figure 7(c), one can observe that the pressure
at the error microphone location (xm

1 = (0·28r0, 0p, −0·15m)) is 0, and the control
system does not operate. This is because the error microphone does not measure
the uncontrollable A1/2b� for the control source located at xc

1. Since W
 t =Wp, one

Figure 8. Robust reliability of the control system as a function of the locations of error
microphone and control source (frequency: 460 Hz, zc =−1·3m, zm =−0·15m, r0 =0·24m). (a)
W
 t/Wp(um

1 =0p, uc
1 =0p); (b) W
 t/Wp(um

1 =0·125p, uc
1 =0p); (c) W
 t/Wp(um

1 =0·25p, uc
1 =0p).
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Figure 9. Robust reliability of the control system as frequency varies (xc
1 = (0·5r0, 0p, −1·3m),

xm
1 =0·28r0, 0p, −0·15m), r0 =0·24m).

can verify that this control system is robust with respect to the uncertainty in the
primary sound field.

As mentioned in section 4.2, lmax is a measure of the robust reliability which
accounts for the design of the control system and the uncertainty in the primary
sound field. For comparison of the robust reliability of the control system, which
satisfies equation (31), with other non-robust control systems, lmax is calculated in
terms of the locations of error microphone and control source. Figure 8 is the plot
of W
 t/Wp(=lmax ) on the decibel scale when the locations of error microphone and
control source vary. In Figure 8, one can see that the control systems, which satisfy
equation (31), are robust with respect to the uncertainty in the primary sound field
(W
 t =Wp). On the other hand, for the cases that do not satisfy equation (31), one
can observe that W
 t/Wp is larger than 1, and the control system is not robust
(W
 t qWp), as typically demonstrated in Figures 8(b) and (c).

Since A22Tc
22/A11Tc

11 and Tm*
22 /Tm*

11 in equation (31) are the functions of frequency,
it is necessary to investigate the robust reliability of the control system in terms
of frequency. Figure 9 shows the robust reliability of the control system (Figure
6) as frequency varies. In Figure 9, one can see that as the difference between the
primary source frequency and the design frequency (460 Hz) increases, the
magnitude of W
 t/Wp increases, and the control system is no longer robust. On the
other hand, in the narrow frequency band centered at the design frequency
(406 Hz), one can see that W
 t/Wp is nearly 1, and the control system has robust
control performance. Thus, one can deduce that the control system, which consists
of fewer control sources and sensors than N, can be used for reducing the narrow
frequency band noise centered at the design frequency.

5.3.  

Figure 6 is the schematic diagram of the experimental set-up. The active control
experiment is conducted by implementing the time-domain filtered-x LMS
adaptive algorithm [9, 10]. By using the generator signal as a reference input to
the adaptive controller, the acoustic feedback problem is eliminated in the
experiment.
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Figure 10. Control performance of the active control system when two primary sources at
xp

1 = (0r0, 0p, −1·4m), xp
2 = (0·5r0, 0p, −1·4m) are operated with equal volume velocity (r0 =0·24m,

xc
1 = (0·5r0, 0p, −1·3m), xm

1 = (0·28r0, 0p, −0·15m)). Radiation power of (a) mode 1, (b) mode 2,
(c) mode 3, (d) total radiation power. —Q—, Before control; —W—, after control.

First, control performance is investigated in terms of sound field variables. For
the generation of primary sound fields that consist of two modes
(c1(r, u), c2(r, u)), two primary sources located at xp

1 = (0r0, 0p, −1·4m) and
xp

2 = (0·5r0, 0p, −1·4m) are used.
Figure 10 is the experimental result when two primary sources at xp

1, xp
2 are

operated with equal volume velocity. Figures 10(a)–(c) show radiation power of
the first, second, and third modes respectively. Figure 10(d) shows total radiation

Figure 11. Control performance of the active control system with varying primary sound field
(r0 =0·24m, xc

1 = (0·5r0, 0p, −1·3m), xm
1 = (0·28r0, 0p, −0·15m)). (a) Total radiation power when

the primary source at xp
1 = (0r0, 0p, −1·4m) is operated; (b) total radiation power when the primary

source at xp
2 = (0·5r0, 0p, −1·4m) is operated. Key as for Figure 10.
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power at duct termination. In Figure 10(d), above the first cut-off frequency
(419 Hz), one can see that it is possible to reduce the radiation power, which
consists of higher modes, by using only one error microphone and one control
source. It also shows that the control performance of the control system slowly
degrades and increases the radiation power above 550 Hz. This is because equation
(31) is not satisfied at that frequency region since the locations of control source
and sensor are designed for 460 Hz (Figure 9). Thus, one can deduce that a control
system with fewer control sources and sensors than N could be used for the
reduction of the narrow frequency band noise centered at the design frequency.

Figure 11(a) shows the total radiation power when the primary source at
xp

1 = (0r0, 0p, −1·4m) is operated. Figure 11(b) is the experimental result when the
primary source located at xp

2 = (0·5r0, 0p, −1·4m) is operated.
By comparing Figure 11(a) with Figure 10(d), one can see that the control

performance of Figure 11(a) is worse than that of Figure 10(d) since the difference
between the direction of A1/2b� and ē1 of Figure 11(a) is larger than that of Figure
10(d) (Table 3 and Figure 5). On the other hand, Figure 11(b) shows better control
performance than Figure 10(d) since the difference between the direction of A1/2b�
and ē1 of Figure 11(b) is smaller than that of Figure 10(d).

It should also be mentioned that in the low frequency region below the first
cut-off frequency (419 Hz), irrespective of the locations of the primary sources,
relatively good control performance is accomplished, as shown in Figure 10(d),
11(a) and 11(b). The reason for such good control performance lies in the fact that
only planewave is propagated below the cut-off frequency.

For comparison of the control performance of the robust control system with
the other non-robust control systems, the radiation power reduction of these
control systems are measured experimentally. Table 4 summarizes the
experimental results performed at the design frequency (460 Hz). Table 4 shows
the control performances of the robust control system (case (1)) and the other
systems (cases (2)–(8)) whose error microphone is located at non-optimum

T 4
Radiation power reductions (dB) of the robust control system and non-robust control
systems (xp

1 = (0r0, 0p, −1·4m), xp
2=(0·5r0, 0p, −1·4m), xc

1 = (0·5r0, 0p, −1·3m),
frequency=460 Hz

Primary sources at
xp

1, xp
2 are operated Primary source Primary source

Location of with equal volume at xp
1 is at xp

1 is
error microphone velocity operated operated

(1) xm
1 = (0·28r0, 0p, −0·15m 9·3 5·2 12·3

(2) xm
1 = (0r0, 0p, −0·15m 7·2 2·0 10·8

(3) xm
1 = (0·5r0, 0p, −0·15m 7·8 3·7 10·7

(4) xm
1 = (1·0r0, 0p, −0·15m 7·0 2·7 10·0

(5) xm
1 = (0·5r0, 0·5p, −0·15m 5·2 1·6 7·1

(6) xm
1 = (1·0r0, 0—5p, −0·15m 2·5 0·3 4·2

(7) xm
1 = (0·5r0, p, −0·15m −2·4 −5·0 1·8

(8) xm
1 = (1·0r0, p, −0·15m −9·3 −4·2 3·5
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positions for robust control. In Table 4, one can observe that the robust
control system (case (1)) performs the best, as expected. In other cases, the
power reductions that can be obtained are less than that of case (1)). It should
also be mentioned that the radiation power reductions are negative (Wt is larger
than Wp) for some primary sound fields since these control systems do not satisfy
equation (31).

From the experimental results one can confirm that it is possible to control the
radiation power, which consists of higher modes in the narrow frequency band
centered at the design frequency, by using one error microphone and one control
source appropriately placed. It should also be mentioned that the control
performance of the robust control system (case (1)) is better than the non-robust
control systems (cases (2)–(8)) that do not satisfy equation (31).

6. CONCLUSIONS

A study on the control performance and robust reliability of an active control
system, which has fewer sensors and actuators than the number of propagating
modes in a duct, has been carried out.

The equations of residual radiation power at duct termination were derived as
a function of sound field variables and control systems variables. Then, by
theoretical analysis and numerical simulation, the control performance and robust
reliability of the control system were investigated in terms of sound field variables
and control system variables. The control system, which has one error microphone
and one control source for reducing radiation power consisting of three
propagating modes, was considered for its simplicity. The possibility of
implementing the robust radiation power control system was also verified by
theoretical analysis and numerical simulation.
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APPENDIX: GREATEST POSSIBLE RESIDUAL RADIATION POWER

The residual radiation power (Wt) for arbitrary b� in S(Wp) can be expressed as

Wt = b�HVb�+ l(Wp − b�HAb�), (A1)

where l is the Lagrange multiplier for the equality constraint, b�HAb�=Wp.
Differentiation of Wt, with respect to b� and l, yields necessary conditions for

an extremum as

1Wt

1b� =Vb�− lAb�=0,
1Wt

1l
=Wp − b�HAb�=0. (A2a, b)

Equations (A2) can be rewritten as

Vb�= lAb�, b�HAb�=Wp. (A3a, b)

Let b�'=A1/2b�, then equations (A3) can be expressed as

A−1/2HVA−1/2b�'= lb�', b�'Hb�'=Wp. (A4a, b)
Equations (A4) shows that l must be the eigenvalue of A−1/2HVA−1/2, and b�' is

the corresponding eigenvector.
Premultiplying both sides of equation (A4a) by b�'H gives

b�'HA−1/2HVA−1/2b�'= lb�'Hb�'. (A5)

From equation (A4b), equation (A5) can be expressed as

b�HVb�= lWp. (A6)

To maximize Wt, l should be the largest eigenvalue of A−1/2HVA−1/2; therefore,
the greatest possible residual radiation power, W
 t, can be expressed as

W
 t = lmaxWp, (A7)

where lmax is the greatest eigenvalue of A−1/2HVA−1/2.
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